Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 859
Filtrar
1.
Aging (Albany NY) ; 16(7): 6314-6333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575196

RESUMO

BACKGROUND: Coagulation system is currently known associated with the development of ischemic stroke (IS). Thus, the current study is designed to identify diagnostic value of coagulation genes (CGs) in IS and to explore their role in the immune microenvironment of IS. METHODS: Aberrant expressed CGs in IS were input into unsupervised consensus clustering to classify IS subtypes. Meanwhile, key CGs involved in IS were further selected by weighted gene co-expression network analysis (WGCNA) and machine learning methods, including random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme-gradient boosting (XGB). The diagnostic performance of key CGs were evaluated by receiver operating characteristic (ROC) curves. At last, quantitative PCR (qPCR) was performed to validate the expressions of key CGs in IS. RESULTS: IS patients were classified into two subtypes with different immune microenvironments by aberrant expressed CGs. Further WGCNA, machine learning methods and ROC curves identified ACTN1, F5, TLN1, JMJD1C and WAS as potential diagnostic biomarkers of IS. In addition, their expressions were significantly correlated with macrophages, neutrophils and/or T cells. GSEA also revealed that those biomarkers may regulate IS via immune and inflammation. Moreover, qPCR verified the expressions of ACTN1, F5 and JMJD1C in IS. CONCLUSIONS: The current study identified ACTN1, F5 and JMJD1C as novel coagulation-related biomarkers associated with IS immune microenvironment, which enriches our knowledge of coagulation-mediated pathogenesis of IS and sheds light on next-step in vivo and in vitro experiments to elucidate the relevant molecular mechanisms.


Assuntos
Biomarcadores , AVC Isquêmico , Aprendizado de Máquina , Humanos , AVC Isquêmico/genética , AVC Isquêmico/diagnóstico , AVC Isquêmico/imunologia , Biomarcadores/metabolismo , Coagulação Sanguínea/genética , Curva ROC , Actinina/genética , Máquina de Vetores de Suporte , Masculino
2.
Medicine (Baltimore) ; 103(11): e37519, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489677

RESUMO

Sepsis is a leading cause of mortality in intensive care units. Sepsis is associated with activation of the coagulation cascade and inflammation. The aim of this study was to identify coagulation-related genes in sepsis that may provide translational potential therapeutic targets. The datasets GSE28750, GSE95233, and GSE65682 were downloaded from the gene expression omnibus database. Consensus-weighted gene co-expression network analysis (WGCNA) was used to identify sepsis modules. Gene set enrichment analysis was used to identify genes enriched in the coagulation cascade. The value of hub-gene in immunological analysis was tested in the validation sets (GSE95233). The value of hub-gene in clinical prognosis was tested in the validation sets (GSE65582). One thousand one hundred seventy-six genes with high connectivity in the clinically significant module were identified as hub genes. Ten genes were found to be enriched in coagulation-related signaling pathways. C3AR1 was selected for further analysis. The immune infiltration analysis showed that lower expression of C3AR1 was associated with immune response in sepsis and could be an independent predictor of survival status in sepsis patients. Meanwhile, univariate and multivariate Cox analysis showed that C3AR1 had a significant correlation with survival. C3AR1 may become an effective biomarker for worse outcomes in sepsis patients associated with immune and coagulation cascade.


Assuntos
Inflamação , Sepse , Humanos , Inflamação/genética , Sepse/genética , Coagulação Sanguínea/genética , Consenso , Bases de Dados Factuais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
3.
Thromb Haemost ; 124(1): 32-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37494968

RESUMO

BACKGROUND: Discrepancy in factor IX activity (FIX:C) between one-stage assay (OSA) and chromogenic substrate assay (CSA) in patients with hemophilia B (PwHB) introduces challenges for clinical management. AIM: To study the differences in FIX:C using OSA and CSA in moderate and mild hemophilia B (HB), their impact on classification of severity, and correlation with genotype. METHODS: Single-center study including 21 genotyped and clinically characterized PwHB. FIX:C by OSA was measured using ActinFSL (Siemens) and CSA by Biophen (Hyphen). In addition, in vitro experiments with wild-type FIX were performed. Reproducibility of CSA was assessed between three European coagulation laboratories. RESULTS: FIX:C by CSA was consistently lower than by OSA, with 10/17 PwHB having a more severe hemophilia type by CSA. OSA displayed a more accurate description of the clinical bleeding severity, compared with CSA. A twofold difference between OSA:CSA FIX:C was present in 12/17 PwHB; all patients had genetic missense variants in the FIX serine protease domain. Discrepancy was also observed with diluted normal plasma, most significant for values below 0.10 IU/mL. Assessment of samples with low FIX:C showed excellent reproducibility of the CSA results between the laboratories. CONCLUSION: FIX:C was consistently higher by OSA compared with the CSA. Assessing FIX:C by CSA alone would have led to diagnosis of a more severe hemophilia type in a significant proportion of patients. Our study suggests using both OSA and CSA FIX:C together with genotyping to classify HB severity and provide essential information for clinical management.


Assuntos
Hemofilia A , Hemofilia B , Humanos , Fator IX/genética , Hemofilia B/diagnóstico , Hemofilia B/genética , Reprodutibilidade dos Testes , Coagulação Sanguínea/genética , Testes de Coagulação Sanguínea/métodos
4.
J Thromb Haemost ; 22(4): 951-964, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104724

RESUMO

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide is a neuropeptide with diverse roles in biological processes. Its involvement in the blood coagulation cascade is unclear. OBJECTIVES: This study unraveled adcyap1b's role in blood coagulation using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 in zebrafish. Effects were validated via adcyap1b knockdown. Gene expression changes in adcyap1b mutants were explored, linking them to clotting disorders. An analysis of proca gene splicing illuminated its role in adcyap1b-related anticoagulation deficiencies. METHODS: Zebrafish were genetically modified using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to induce adcyap1b knockout. Morpholino-mediated gene knockdown was employed for validation. Expression levels of coagulation factors, anticoagulant proteins, and fibrinolytic system genes were assessed in adcyap1b mutant zebrafish. Alternative splicing of proca gene was analyzed. RESULTS: Adcyap1b mutant zebrafish exhibited severe hemorrhage, clotting disorders, and disrupted blood coagulation. Morpholino-mediated knockdown replicated observed phenotypes. Downregulation in transcripts related to coagulation factors V and IX, anticoagulation protein C, and plasminogen was observed. Abnormal alternative splicing of the proca gene was identified, providing a mechanistic explanation for anticoagulation system deficiencies. CONCLUSION: Adcyap1b plays a crucial role in maintaining zebrafish blood coagulation and hemostasis. Its influence extends to the regulation of procoagulant and anticoagulant pathways, with abnormal alternative splicing contributing to observed deficiencies. These findings unveil a novel aspect of adcyap1b function, offering potential insights into similar processes in mammalian systems.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Coagulação Sanguínea/genética , Fator V/metabolismo , Hemorragia , Anticoagulantes/metabolismo , Mamíferos/metabolismo
5.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
6.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259922

RESUMO

Endothelial cells form a constitutively anticoagulant surface under homeostasis. While loss of this anticoagulant property is a hallmark of many cardiovascular diseases, the molecular mechanisms underlying the procoagulant transition remain incompletely understood. In this issue of the JCI, Schmaier et al. identify the phospholipid scramblases TMEM16E and TMEM16F, which support endothelial procoagulant activity through phosphatidylserine (PS) externalization. Genetic deletion of TMEM16E or TMEM16F or treatment with TMEM16 inhibitors prevented PS externalization and reduced fibrin formation in the vessel wall independently of platelets in a murine laser-injury model of thrombosis. These findings reveal a role for endothelial TMEM16E in thrombosis and identify TMEM16E as a potential therapeutic target for preventing thrombus formation.


Assuntos
Células Endoteliais , Trombose , Camundongos , Animais , Células Endoteliais/metabolismo , Coagulação Sanguínea/genética , Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Anticoagulantes , Fosfatidilserinas
7.
BMC Med ; 21(1): 195, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226166

RESUMO

BACKGROUND: Endometriosis is recognized as a complex gynecological disorder that can cause severe pain and infertility, affecting 6-10% of all reproductive-aged women. Endometriosis is a condition in which endometrial tissue, which normally lines the inside of the uterus, deposits in other tissues. The etiology and pathogenesis of endometriosis remain ambiguous. Despite debates, it is generally agreed that endometriosis is a chronic inflammatory disease, and patients with endometriosis appear to be in a hypercoagulable state. The coagulation system plays important roles in hemostasis and inflammatory responses. Therefore, the purpose of this study is to use publicly available GWAS summary statistics to examine the causal relationship between coagulation factors and the risk of endometriosis. METHODS: To investigate the causal relationship between coagulation factors and the risk of endometriosis, a two-sample Mendelian randomization (MR) analytic framework was used. A series of quality control procedures were followed in order to select eligible instrumental variables that were strongly associated with the exposures (vWF, ADAMTS13, aPTT, FVIII, FXI, FVII, FX, ETP, PAI-1, protein C, and plasmin). Two independent cohorts of European ancestry with endometriosis GWAS summary statistics were used: UK Biobank (4354 cases and 217,500 controls) and FinnGen (8288 cases and 68,969 controls). We conducted MR analyses separately in the UK Biobank and FinnGen, followed by a meta-analysis. The Cochran's Q test, MR-Egger intercept test, and leave-one-out sensitivity analyses were used to assess the heterogeneities, horizontal pleiotropy, and stabilities of SNPs in endometriosis. RESULTS: Our two-sample MR analysis of 11 coagulation factors in the UK Biobank suggested a reliable causal effect of genetically predicted plasma ADAMTS13 level on decreased endometriosis risk. A negative causal effect of ADAMTS13 and a positive causal effect of vWF on endometriosis were observed in the FinnGen. In the meta-analysis, the causal associations remained significant with a strong effect size. The MR analyses also identified potential causal effects of ADAMTS13 and vWF on different sub-phenotypes of endometrioses. CONCLUSIONS: Our MR analysis based on GWAS data from large-scale population studies demonstrated the causal associations between ADAMTS13/vWF and the risk of endometriosis. These findings suggest that these coagulation factors are involved in the development of endometriosis and may represent potential therapeutic targets for the management of this complex disease.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/epidemiologia , Endometriose/genética , Análise da Randomização Mendeliana , Fator de von Willebrand , Fatores de Coagulação Sanguínea , Coagulação Sanguínea/genética
8.
Front Immunol ; 14: 1107419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006234

RESUMO

The coagulation system is closely related to the physiological status and immune response of the body. Recent years, studies focusing on the association between coagulation system abnormalities and tumor progression have been widely reported. In clear cell renal cell carcinoma (ccRCC), poor prognosis often occurs in patients with venous tumor thrombosis and coagulation system abnormalities, and there is a lack of research in related fields. Significant differences in coagulation function were also demonstrated in our clinical sample of patients with high ccRCC stage or grade. Therefore, in this study, we analyzed the biological functions of coagulation-related genes (CRGs) in ccRCC patients using single-cell sequencing and TCGA data to establish the 5-CRGs based diagnostic signature and predictive signature for ccRCC. Univariate and multivariate Cox analyses suggested that prognostic signature could be an independent risk factor. Meanwhile, we applied CRGs for consistent clustering of ccRCC patients, and the two classes showed significant survival and genotype differences. The differences in individualized treatment between the two different subtypes were revealed by pathway enrichment analysis and immune cell infiltration analysis. In summary, we present the first systematic analysis of the significance of CRGs in the diagnosis, prognosis, and individualized treatment of ccRCC patients.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Prognóstico , Coagulação Sanguínea/genética , Neoplasias Renais/genética , Neoplasias Renais/terapia , Imunoterapia
9.
J Med Case Rep ; 17(1): 161, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055848

RESUMO

BACKGROUND: The clotting or hemostasis system is a meticulously regulated set of enzymatic reactions that occur in the blood and culminate in formation of a fibrin clot. The precisely calibrated signaling system that prevents or initiates clotting originates with the activated Factor Seven (FVIIa) complexed with tissue factor (TF) formed in the endothelium. Here we describe a rare inherited mutation in the FVII gene which is associated with pathological clotting. CASE PRESENTATION: The 52-year-old patient, with European, Cherokee and African American origins, FS was identified as having low FVII (10%) prior to elective surgery for an umbilical hernia. He was given low doses of NovoSeven (therapeutic Factor VIIa) and had no unusual bleeding or clotting during the surgery. In fact, during his entire clinical course he had no unprovoked bleeding. Bleeding instances occurred with hemostatic stresses such as gastritis, kidney calculus, orthopedic surgery, or tooth extraction, and these were handled without factor replacement. On the other hand, FS sustained two unprovoked and life-threatening instances of pulmonary emboli, although he was not treated with NovoSeven at any time close to the events. Since 2020, he has been placed on a DOAC (Direct Oral Anticoagulant, producing Factor Xa inhibition) and has sustained no further clots. POSSIBLE MECHANISM OF (UNAUTHORIZED) FVII ACTIVATION: FS has a congenitally mutated FVII/FVIIa gene, which carries a R315W missense mutation in one allele and a mutated start codon (ATG to ACG) in the other allele, thus rendering the patient effectively homozygous for the missense FVII. Structure based comparisons with known crystal structures of TF-VIIa indicate that the patient's missense mutation is predicted to induce a conformational shift of the C170's loop due to crowding of the bulky tryptophan to a distorted "out" position (Fig. 1). This mobile loop likely forms new interactions with activation loop 3, stabilizing a more active conformation of the FVII and FVIIa protein. The mutant form of FVIIa may be better able to interact with TF, displaying a modified serine protease active site with enhanced activity for downstream substrates such as Factor X. CONCLUSIONS: Factor VII can be considered the gatekeeper of the coagulation system. Here we describe an inherited mutation in which the gatekeeper function is altered. Instead of the expected bleeding manifestations resulting from a clotting factor deficiency, the patient FS suffered clotting episodes. The efficacy of the DOAC in treating and preventing clots in this unusual situation is due to its target site of inhibition (anti-Xa), which lies downstream of the site of action of FVIIa/TF.


Assuntos
Fator VIIa , Trombose , Humanos , Pessoa de Meia-Idade , Fator VIIa/uso terapêutico , Fator VIIa/química , Fator VIIa/metabolismo , Alelos , Tromboplastina/química , Tromboplastina/metabolismo , Coagulação Sanguínea/genética , Trombose/tratamento farmacológico , Modelos Estruturais
10.
Cardiovasc Res ; 119(8): 1624-1640, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943786

RESUMO

The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.


Assuntos
COVID-19 , Doenças Cardiovasculares , Hemostáticos , MicroRNAs , Humanos , COVID-19/genética , Hemostasia/genética , Regulação da Expressão Gênica , Coagulação Sanguínea/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , MicroRNAs/genética
11.
J Mol Evol ; 90(6): 418-428, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181519

RESUMO

Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.


Assuntos
Fatores de Coagulação Sanguínea , Cordados , Animais , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Vertebrados/genética , Coagulação Sanguínea/genética , Cordados/genética , Genoma
13.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944207

RESUMO

Hermansky-Pudlak syndrome is an autosomal recessive disease characterized by albinism, visual impairment, and blood platelet dysfunction. One of the genes responsible for Hermansky-Pudlak syndrome, hps1, regulates organelle biogenesis and thus plays important roles in melanin production, blood clotting, and the other organelle-related functions in humans and mice. However, the function of hps1 in other species remains poorly understood. In this study, we discovered albino medaka fish during the maintenance of a wild-derived population and identified hps1 as the responsible gene using positional cloning. In addition to the specific absence of melanophore pigmentation, the hps1 mutant showed reduced blood coagulation, suggesting that hps1 is involved in clotting caused by both mammalian platelets and fish thrombocytes. Together, the findings of our study demonstrate that hps1 has an evolutionarily conserved role in melanin production and blood coagulation. In addition, our study presents a useful vertebrate model for understanding the molecular mechanisms of Hermansky-Pudlak syndrome.


Assuntos
Síndrome de Hermanski-Pudlak , Oryzias , Albinismo , Animais , Coagulação Sanguínea/genética , Transtornos Hemorrágicos , Síndrome de Hermanski-Pudlak/genética , Humanos , Mamíferos , Melaninas/genética , Proteínas de Membrana/genética , Camundongos , Mutação , Oryzias/genética
14.
J Thromb Haemost ; 20(5): 1089-1105, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102686

RESUMO

BACKGROUND: Geographic variability in coagulation across populations and their determinants are poorly understood. OBJECTIVE: To compare thrombin (TG) and plasmin (PG) generation parameters between healthy Tanzanian and Dutch individuals, and to study associations with inflammation and different genetic, host and environmental factors. METHODS: TG and PG parameters were measured in 313 Tanzanians of African descent living in Tanzania and 392 Dutch of European descent living in the Netherlands and related to results of a dietary questionnaire, circulating inflammatory markers, genotyping, and plasma metabolomics. RESULTS: Tanzanians exhibited an enhanced TG and PG capacity, compared to Dutch participants. A higher proportion of Tanzanians had a TG value in the upper quartile with a PG value in the lower/middle quartile, suggesting a relative pro-coagulant state. Tanzanians also displayed an increased normalized thrombomodulin sensitivity ratio, suggesting reduced sensitivity to protein C. In Tanzanians, PG parameters (lag time and TTP) were associated with seasonality and food-derived plasma metabolites. The Tanzanians had higher concentrations of pro-inflammatory cytokines, which correlated strongly with TG and PG parameters. There was limited overlap in genetic variation associated with TG and PG parameters between the two cohorts. Pathway analysis of genetic variants in the Tanzanian cohort revealed multiple immune pathways that were enriched with TG and PG traits, confirming the importance of co-regulation between coagulation and inflammation. CONCLUSIONS: Tanzanians have an enhanced TG and PG potential compared to Dutch individuals, which may relate to differences in inflammation, genetics and diet. These observations highlight the importance of better understanding of the geographic variability in coagulation across populations.


Assuntos
Fibrinolisina , Trombina , Adulto , População Negra , Coagulação Sanguínea/genética , Testes de Coagulação Sanguínea , Fibrinolisina/metabolismo , Humanos , Inflamação/genética , Países Baixos , Tanzânia , Trombina/metabolismo , População Branca
15.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216179

RESUMO

HLJ1 (also called DNAJB4) is a member of the DNAJ/Hsp40 family and plays an important role in regulating protein folding and activity. However, there is little information about the role of HLJ1 in the regulation of physiological function. In this study, we investigated the role of HLJ1 in blood coagulation using wild-type C57BL/6 mice and HLJ1-null (HLJ1-/-) mice. Western blot analysis and immunohistochemistry were used to assess the expression and distribution of HLJ1 protein, respectively. The tail bleeding assay was applied to assess the bleeding time and blood loss. A coagulation test was used for measuring the activity of extrinsic, intrinsic and common coagulation pathways. Thromboelastography was used to measure the coagulation parameters in the progression of blood clot formation. The results showed that HLJ1 was detectable in plasma and bone marrow. The distribution of HLJ1 was co-localized with CD41, the marker of platelets and megakaryocytes. However, genetic deletion of HLJ1 did not alter blood loss and the activity of extrinsic and intrinsic coagulation pathways, as well as blood clot formation, compared to wild-type mice. Collectively, these findings suggest that, although HLJ1 appears in megakaryocytes and platelets, it may not play a role in the function of blood coagulation under normal physiological conditions.


Assuntos
Coagulação Sanguínea/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Animais , Biomarcadores/metabolismo , Plaquetas/metabolismo , Deleção de Genes , Masculino , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína IIb da Membrana de Plaquetas/genética
16.
Clin Appl Thromb Hemost ; 28: 10760296211073272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068171

RESUMO

To investigate the differences in the correlation between multidrug resistance protein 1 (MDR1) (ABCB1) gene polymorphism and clopidogrel resistance in patients of the Hui and Han nationalities with percutaneous coronary intervention (PCI). A total of 377 subjects (154 people of Hui nationality, 223 people of Han nationality) with PCI were enrolled in the study. Each patient's platelet aggregation rate was induced by adenosine diphosphate and measured using light turbidimetry. Based on the results, the patients were divided into two groups: a clopidogrel resistance (CR) group and a non-clopidogrel resistance (NCR) group. Restrictive fragment-length polymorphism polymerase chain reaction technology was then used to determine the genotype and alleles at two loci (C3435 T[rs1045642] and C1236 T[rs1128503]), calculate the frequencies of the genotype and alleles at these two loci, and conduct correlation analysis. The incidence rate of clopidogrel resistance was 23.4%, and the frequencies of the TT genotype and T allele at C3435 T for patients of both nationalities were significantly higher in the CR group than in the NCR group (P < 0.05). There were no significant differences between the two groups in genotype or allele frequency at C1236 T. There was a significant difference in the distribution of C1236 T polymorphism between the two nationalities (P < 0.05), but there was no significant difference between the two nationalities in C3435 T polymorphism. Patients with a T allele at MDR1 C3435 T are more likely to show clopidogrel resistance, and no significant differences were identified in C3435 T gene polymorphism between the two nationalities.


Assuntos
Povo Asiático/genética , Clopidogrel/farmacologia , Resistência a Medicamentos/genética , Inibidores da Agregação Plaquetária/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Idoso , Coagulação Sanguínea/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição
17.
J Thromb Haemost ; 20(3): 565-573, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34847292

RESUMO

BACKGROUND: The factor V east Texas bleeding disorder (FVETBD) is caused by increased plasma tissue factor pathway inhibitor-α (TFPIα) concentration. The underlying cause is a variant in F5 causing alternative splicing within exon 13 and producing FV-short, which tightly binds the C-terminus of TFPIα, prolonging its circulatory half-life. OBJECTIVES: To diagnose a family presenting with variable bleeding and laboratory phenotypes. PATIENTS/METHODS: Samples were obtained from 17 family members for F5 exon 13 sequencing. Plasma/platelet TFPI and platelet FV were measured by ELISA and/or western blot. Plasma thrombin generation potential was evaluated using calibrated automated thrombography. RESULTS: The FVET variant was identified in all family members with bleeding symptoms and associated with elevated plasma TFPIα (4.5- to 13.4-fold) and total TFPI (2- to 3-fold). However, TFPIα and FV-short were not elevated in platelets. TF-initiated thrombin generation in patient plasma was diminished but was restored by a monoclonal anti-TFPI antibody or factor VIIa. TFPIα localized within vascular extracellular matrix in an oral lesion biopsy from an affected family member. CONCLUSIONS: Factor V east Texas bleeding disorder was diagnosed in an extended family. The variant was autosomal dominant and highly penetrant. Elevated plasma TFPIα, rather than platelet TFPIα, was likely the primary cause of bleeding. Plasma FV-short did not deplete TFPIα from extracellular matrix. In vitro thrombin generation was restored with an anti-TFPI antibody or factor VIIa suggesting effective therapies may be available. Increased awareness of, and testing for, bleeding disorders associated with F5 exon 13 variants and elevated plasma TFPI are needed.


Assuntos
Transtornos da Coagulação Sanguínea , Fator V , Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/genética , Testes de Coagulação Sanguínea , Fator V/genética , Humanos , Trombina/metabolismo
18.
Biomolecules ; 11(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680169

RESUMO

Scanning Electron Microscopy (SEM) is a powerful, high-resolution imaging technique widely used to analyze the structure of fibrin networks. Currently, structural features, such as fiber diameter, length, density, and porosity, are mostly analyzed manually, which is tedious and may introduce user bias. A reliable, automated structural image analysis method would mitigate these drawbacks. We evaluated the performance of DiameterJ (an ImageJ plug-in) for analyzing fibrin fiber diameter by comparing automated DiameterJ outputs with manual diameter measurements in four SEM data sets with different imaging parameters. We also investigated correlations between biophysical fibrin clot properties and diameter, and between clot permeability and DiameterJ-determined clot porosity. Several of the 24 DiameterJ algorithms returned diameter values that highly correlated with and closely matched the values of the manual measurements. However, optimal performance was dependent on the pixel size of the images-best results were obtained for images with a pixel size of 8-10 nm (13-16 pixels/fiber). Larger or smaller pixels resulted in an over- or underestimation of diameter values, respectively. The correlation between clot permeability and DiameterJ-determined clot porosity was modest, likely because it is difficult to establish the correct image depth of field in this analysis. In conclusion, several DiameterJ algorithms (M6, M5, T3) perform well for diameter determination from SEM images, given the appropriate imaging conditions (13-16 pixels/fiber). Determining fibrin clot porosity via DiameterJ is challenging.


Assuntos
Fibrina/ultraestrutura , Hemorragia/diagnóstico por imagem , Plasma/diagnóstico por imagem , Trombose/diagnóstico , Adulto , Coagulação Sanguínea/genética , Feminino , Fibrina/química , Hemorragia/diagnóstico , Hemorragia/patologia , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Gravidez , Trombose/sangue , Trombose/diagnóstico por imagem , Trombose/patologia
19.
Clin Appl Thromb Hemost ; 27: 10760296211039285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541919

RESUMO

Acute ischemic stroke patients with intravenous (IV) recombinant tissue plasminogen activator (rt-PA) thrombolysis have different outcomes. The degree of thrombolysis depends largely on the delicate balance of coagulation and fibrinolysis. Thus, our study aimed to investigate the prognostic value of routine coagulation parameters in acute stroke patients treated with rt-PA. From December 2016 to October 2018, consecutive patients treated with standard-dose IV rt-PA within 4.5 h of stroke onset were collected in Beijing Tiantan Hospital. Routine coagulation parameters, including platelet count, mean platelet volume, platelet distribution width, prothrombin time (PT), activated partial thromboplastin time, thrombin time, and fibrinogen, were measured at baseline (h0) and 24 h (h24) after thrombolysis. The change of coagulation parameters was defined as the (h24-h0)/h0 ratio. The prognosis included short-term outcome at 24 h and functional outcome at 3 months. A total of 267 patients were investigated (188 men and 79 women) with a mean age of 60.88 ± 12.31 years. In total, 9 patients had early neurological deterioration within 24 h, and 99 patients had an unfavorable outcome at the 3-month visit. In multivariate logistic regression, the (h24-h0)/h0 of PT was associated with unfavorable functional outcomes at 3 months (odds ratio: 1.42, 95% confidence interval: 1.02-2.28). While the change of other coagulation parameters failed to show any correlation with short-term or long-term prognosis. In conclusion, the prolongation of PT from baseline to 24 h after IV rt-PA increases the risk of 3-month unfavorable outcomes in acute stroke patients.


Assuntos
Administração Intravenosa/métodos , Coagulação Sanguínea/genética , AVC Isquêmico/tratamento farmacológico , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/uso terapêutico , Doença Aguda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Ativador de Plasminogênio Tecidual/farmacologia
20.
Clin Appl Thromb Hemost ; 27: 1076029620967108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34583575

RESUMO

To explore the possible single nucleotide polymorphisms (SNPs) sites in the promoter region of fibrinogen B ß (FGB), and construct logistic regression model and haplotype model, so as to reveal the influence of FGB promoter SNPs on susceptibility, hemodynamics and coagulation function of lower extremity deep venous thrombosis (LEDVT) in the genetic background. LEDVT patients (120) and healthy people (120) were taken as case and control objects, respectively. SNPs and their genotypes of FGB promoter were detected by promoter sequencing and PCR-RFLP. The parameters of coagulation system were evaluated. There were 6 SNPs in FGB promoter, which were ß-148C/T, ß-249C/T, ß-455G/A, ß-854G/A, ß-993C/T and ß-1420G/A. The genotype and allele frequency of ß-1420 G/A, ß-455G/A, ß-249c/T and ß-148C/T were significantly different between the LEDVT group and the control group, but not ß-993C/T and ß-854G/A. In addition, we found that the higher the content of Fibrinogen (FG), the higher the risk of LEDVT. The risk of LEDVT increased by 4.579 times for every unit increase of fibrinogen. We also found that FG, PT and APTT in LEDVT group were higher than those in control group, while TT was lower than those in control group; Furthermore, there was no significant difference in all coagulation indexes among 6 SNP genotypes in LEDVT group, while a significant difference was found between the 2 genotypes of ß-993C/T in the control group. ß-993C/T may indirectly affect the susceptibility of LEDVT by improving the basic level of plasma FG.


Assuntos
Fibrinogênio/genética , Trombose Venosa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Coagulação Sanguínea/genética , Feminino , Humanos , Extremidade Inferior/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Trombose Venosa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...